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We consider quantum unbounded spin systems (lattice boson systems) in 
v-dimensional lattice space Z". Under appropriate conditions on the interactions 
we prove that in a region of high temperatures the Gibbs state is unique, is 
translationally invariant, and has clustering properties. The main methods we 
use are the Wiener integral representation, the cluster expansions for zero 
boundary conditions and for general Gibbs state, and explicitly fl-dependent 
probability estimates. For one-dimensional systems we show the uniqueness of 
Gibbs states for any value of temperature by using the method of perturbed 
states. We also consider classical unbounded spin systems. We derive necessary 
estimates so that all of the results for the quantum systems hold for the classical 
systems by straightforward applications of the methods used in the quantum 
case.  

KEY WORDS: Quantum unbounded spin systems; Wiener integral; Gibbs 
states; cluster expansion; clustering property; probability estimates. 

1. INTRODUCTION 

We con t inue  o u r  s tudy  of  q u a n t u m  u n b o u n d e d  spin systems (lat t ice boson  

systems)  in i t ia ted in ref. 26. The  m o d e l  we cons ider  can  be v iewed as a 

m o d e l  for the q u a n t u m  crystals  ts~ and  is closely re la ted  to lat t ice field 
theory  wi th  con t i nu ous  time.tl~ In  ref. 26 we gave  a cha rac te r i za t ion  o f  the 

G ibbs  states in t e rms  of  cond i t i ona l  reduced  densi ty  mat r ices  and  

inves t iga ted  the s t ruc ture  o f  the space o f  G ibbs  states such as existence,  
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convexity, and compactness of the space (see Section 2.1). In order to 
understand the phase transition phenomena, it may be necessary to show 
the uniqueness of the Gibbs states in a region of high temperatures, and 
then the nonuniqueness of the states at low temperatures. (3"n'27) In this 
paper we prove the uniqueness and the clustering properties of the Gibbs 
states in a region of high temperatures under appropriate conditions on 
interactions (two-body interactions). In the case of one-dimensional systems 
the uniqueness holds for any value of temperature. See Section 2.2 for the 
details. The methods for the quantum systems can be applied straight- 
forwardly to the classical systems to show that all of the results for the 
quantum systems also hold for the classical systems. We plan to investigate 
the detailed structure of the phase diagram in the near future. 

The main methods we use are the Wiener integral representation (]3'33) 
and cluster expansions for zero boundary conditions and for general Gibbs 
states. ('-3) For classical systems a cluster expansion has been developed in 
terms of polymer systems (iv) and the analyticities and the clustering proper- 
ties of correlation functions have been established. For quantum systems 
one of us gave a sketch of a cluster expansion for zero boundary condi- 
tions. (25) However, the uniqueness of Gibbs states for classical as well as 
quantum systems remains open. See Conjecture 4.1 of ref. 26. In this paper 
we develop a cluster expansion method for quantum systems by using the 
Wiener integral representation and modifying the cluster expansion method 
developed in refs. 23 and 25 to show the uniqueness of Gibbs states in a 
region of high temperatures. In ref. 22 one-dimensional systems are studied 
by means of a cluster expansion of polymer types and an infinite-volume 
limiting Gibbs state which is translationally invariant and ergodic is 
constructed. By using a method of perturbed states (z']5) we prove that the 
state constructed in ref. 22 is the unique Gibbs state for one-dimensional 
systems. 

Let us describe the main mthods in this paper briefly. As in ref. 26, 
we use the Wiener integral representation. (~3'33) For f l>0 ,  let S # be the 
space of continuous loops from [0, fl] to R a, i.e., S#=  {s: [0, fl] ~Rd :  
s(0) =s(fl)}. We give an a priori measure 2# by 2#(ds)=dx P#(dco), 
s=x+og, where dx is the Lebesgue measure on R d and PP(d~o) is the 
conditional Wiener measure, t33) For a finite set A = Z v we use the following 
notation: 

xa={xi:i~A }, dxA=i-I dxi 
i ~ A  (1.1) 

sA={s,:siESP, i~A}, 2p(dsA) = ~ 2p(ds,) 
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and t2~ = (SP) A. Put 12 p = (SP) z~. We consider the following type of inter- 
action (two-body interactions): 

.V(xA)= ~ P(x,)+ ~ U(x~,xj; I i - j l )  (1.2) 
i E A  { i , j }  ~ A  

where P and U are the self-interaction and the two-body interaction, 
respectively, which satisfy specific conditions (Assumption 2.2.1 ). Put 

W(XA,XAc)= ~ U(xg, xj; I i - j l )  (1.3) 
{ i ~  c 

i ~ A , j E A  

We write 

ga(sA) =Iff  V(sa(r)) dr (1.4) 

and Wp(sa, sac) analogously. For A c Z" we denote by ~'A the local 
a-algebra on f2 a and put o~-= ~z,'. See Section 2 for the details. 

For finite A c Z ~, let v~,~ be the local Gibbs measure on/2~ with zero 
boundary conditions and let vp be a Gibbs measure on /2  p. See Section 2.1 
for the definitions. In Section 3 we develop the cluster expansions of the 
following types: For any A c A  c Z v and any ~-measurable bounded 
functionf 

v(AO)p( f ) = E Kp(A,X;f)gA,p(AuX) (1.5) 
r 

and 

vp( f )=  ~ Kp(A,X;f)~p(AuX)+RA,p(f) (1.6) 

We then show that 

lim RA,p(f) = 0 
A ~ Z  v 

By using the method of Kirkwood-Salsburg type integral equations ~3~ we 
prove that for any X c  Z v 

lim gA,p(X) = gp(X3 
A ~ Z * '  
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Thus we conclude that for any Gibbs state vp 

vp(f) = ,lirnz, ' VtAO)p(f) 

and so the uniqueness of Gibbs measures follows from the above. This 
result and the definition of Gibbs states (Definition 2.1.4) imply the unique- 
ness of Gibbs states. The cluster properties of the unique Gibbs state 
follow from a consequence of the convergence of the cluster expansion (see 
Section 6.3). 

For one-dimensional systems we use the method of perturbed 
states. 'z'~5"29) Let vp be a fixed extremal Gibbs measure which is trans- 
lationally invariant. For any interval A = [ - n , n ]  it turns out that 
exp[ Wp(s a, sac)] is an element in L~-(f2 p, dvp). By the equilibrium condi- 
tions we have that for any ~-measurable  bounded funct ionf  

v,0~ (r) ,l.p J = f va(ds)f(s) exp[ Wp(s a, SAC)]/NA,p 

where KrA, p is the normalization factor. By taking n ~ m and using the 
extremality of vp we show that for any fl > 0 

vp(f) = lim (ol v a,.p(f) 
n ~  o o  

where A,,= [ - -n ,  n]. This implies the uniqueness. See Section 7 for the 
details. 

In order to obtain the results in Section 2.2 for classical systems, one 
only needs to replace 

by 

S ~, 2p(ds), ~2P, Vp, Wp 

R #, dx, f2=(Ra)  z', ,8V, flW 

respectively. Then straightforward applications of the methods used for 
quantum systems give the results for classical systems. We supply the 
necessary estimates for classical systems in Section 4.2. 

We organize the paper as follows: In Section 2.1 we introduce nota- 
tions, definitions, and necessary preliminaries. In Section 2.2 we give basic 
assumptions on interactions and then list the main results in this paper. We 
develop a cluster expansion for zero boundary conditions in Section 3.1 
and then derive a cluster expansion for general Gibbs measures in 
Section 3.2 by using the equilibrium conditions. Section 4 is devoted to 
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a priori estimates. We also produce basic estimates for classical systems in 
Section 4.2. In Section 5 we prove the convergence of the cluster expansion 
for zero boundary conditions by using the basic estimates. In Section 6 
we prove uniqueness and clustering properties in a region of high tem- 
peratures. The main tool is the method of Kirkwood-Salsburg type integral 
equations. (3~ The proof of the uniqueness of Gibbs states for one-dimen- 
sional systems for any values of fl > 0 is given in Section 7. In the Appendix 
we produce the proofs of explicitly p-dependent probability estimates 
(Propositions 4.1.3 and 4.2.3). 

2. P R E L I M I N A R I E S  A N D  M A I N  RESULTS 

2.1. Pre l iminar ies  

We consider quantum unbounded spin systems (lattice boson systems) 
on the v-dimensional lattice space Z v. We collect notations, definitions, and 
some results from ref. 26 which will be used in the sequel. By cg we mean 
the class of finite subsets of Z v. At each site i e Z v we associate an identical 
copy of the Hilbert space L2(R a, dx), where dx is the Lebesgue measure on 
R d. For x = (x 1 ..... x d) ~ R d and i = (il ..... iv) ~ Z ~ we write 

Ix[ = (xl) z , [il = max 1i/1 (2.1) 
I = 1  I ~ l ~ v  

For any bounded region A c Z ~ we write 

x a =  {x~.: i ~ A } ,  d x a =  I-I dx, (2.2) 
i ~ A  

The (local) Hilbert space for lattice boson systems in A ~ cr is given by 

S~a = | L2(R a, dxi) 

= L2((RU) A, dxA) (2.3) 

and a (local) Hamiltonian operator on ~A is given by 

�89 Z "t,+ V(xa) 
l E A  

V(xA)- Y" r 
A c = A  

(2.4) 

822/80/1-2-15 
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where A; is the Laplacian operator for the variable x i E R  d and for each 
A c Z ", and ~ is the interaction potential, which is a measurable real- 
valued function on (Rd) ~. 

As in ref. 26, we impose the following conditions on the potential ~: 

Assumption 2.1.1. The potential ~ = ( q ~ ) z ~ z , .  satisfies the 
following conditions: 

(a) ~ is a Borel measurable function on (Rd) A. 

(b) ( ~  is invariant under translations on Z ~. 

(c) (Superstability) There are A > 0 and c ~ R such that 

V(xA= Z e~(x~)~> E (Axe, - c )  
A ~ A  i~A 

(d) (Strong regularity) There exists a decreasing positive function ~u 
on the natural integers such that 

~ ' ( r ) < ~ K r  . . . .  forsome K a n d e > 0 w i t h  ~ ~U(Iil)<A 
i ~ Z  v 

Furthermore if .41 and A2 are disjoint finite subsets of Z v and if one writes 

V(xa, uA2) = V(xA,) + V(xA,) + W(XA,, XA2) 

then the bound 

IW(XA,, XA:)I ~ ~ ~. ~(li--jl)  ~(xil 2 .~_ Xj2) 
i~AI j~A2 

holds. 

For a bounded domain A c Z v, the C*-algebra of local observables is 
defined by 

9.tA = .~(.~.,) (2.5) 

where 9(.~A) is the algebra of all bounded operators on -~A. If 
A I ~ A 2 = ~ ,  then 9 . ~ A I u A 2 = ~ [ A | ( ~ [ A 2 ,  and ~,~ is isomorphic to the 
C*-algebra 9.IA, | 1A2, where 1A2 denotes the identity operator on -~a2. In 
this way we identity 9.[ A as a subalgebra of 9.Ia, if A c A'. The quasilocal 
algebra of local observables is given by 

,26, 
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where the bar  means the complet ion with respect to the uniform norm. 
Notice that  9,I is a unital C*-algebra. 

We next describe the Wiener integral formalism of  lattice boson 
systems.t4,13,26,33) For  x, y ~ R d and fl > 0 let us denote by Wax.y the set of  
continuous paths co: [0, fl]---, R d with co (0 )=x ,  co(fl)= y. The set Wax y is 
endowed with the s tandard Borel space structure. For  fl > 0 denote by ]6ax, ~, 
the conditional Wiener measure  on Wx, y,(33) 

1 2) 
Pax,,,(W,,,y) = (2nil) -a/2 exp ( - ~ - ~  Ix - Yl 

For  finite A E Z v, xA, Ya ~ (Ra), and fl > O, we use the notat ion 

a = X Wax, and W X A ,  )'A - �9 Yi 
i ~ A  

P 
P xA , . va  - i ~ A P f l i ,  y~ 

We identify the space Wax, x, x E R  d, with a single space WP= Wao, o by 
means of the mapping  co ~ co + x. The measures Pax, x and PP = P0Po are 
t ransformed thereby into each other. Fur thermore ,  we use the map  
Wax.,*-+Wao,o given by co~-+co+Lax, y where Lax.j, is the linear function 
Lax, y ( t ) = x + f l - l t ( y - - x ) .  The measure  Pax, y is t ransformed thereby into 
e x p [ - ( 1 / 2 f l )  I x - y l  2] PP. The product  space WaxA,.,, A is t ransformed into 
(Woa.o) A analogously in which the function LaxA. y,( t) = x ,  + f l -  ~ t( y A -- X A) 
is used. We shall use the notat ion 

SP = R d x  W/1 and s = ( x ,  co)~S p (2.7) 

as well as 

~ P = R U x  R a x  W p and g = ( x , y ,  co )e~  p (2.8) 

where s(t) = x + co(t) and g(t) = co(t) +Lax, y(t), respectively. The set S p has 
a a-algebra generated by the products  of  Borel sets in R d and cylinder sets 
in W a =  Woao t33) We give an a priori measure ;tp on S p by 

2p(ds) -= dx PP( dco ), 

2p(dsA) = 1--I 2p(dsi) 

s = ( x ,  co)~S p 
(2.9) 

We use the notat ions 

K2 a = (sa)Z" = ( R a x  Wa) z '  (2.10) 
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and 
Dp = (~r = (Re x R e x WP) z' (2.11 ) 

For each ieZ v, let Pi:OP---,S p be the projection P~(s)=si, the value 
(path) on the ith site. For each A c Z ~, we have a local a-algebra ~-a which 
is the minimal a-algebra for which P~, i E A, are measurable. We simply 
write ~ for #-z,'. We write ~ (O  a, #-) for the family of probability measures 
on 0 p. 

We write that for A ~ Z ~ and s ~ 0 p 

q~ A,p(s ~) = f: q~,j(s ~( t) ) dt 

Vp(sa)= ~, ~a(sa) (2.12) 

Wfl(SA' SAC)= E ~A(SzJ) 
A~A#~,A~AC~O 

Denote 

s~=ff s2(t) dt, i rZ v 

~u={s~I2:~/l, ~. s~<~N~-(2Z+l) ~} (2.13) 
lil <~l 

~ = U ~ l V  
N~N 

We say that a measure/~ on (O p, ~ )  is tempered if it has its support on 
~.(3~) A Borel probability measure/ l  on (O p, ~-) is said to be regular if 
there exist , , i>0  and 6 so that the projection/I(dSA) of/~ on any (O p, ~A) 
satisfies 

g(SA ]12) <~ exp [ --i~A (As~--~)] (2.14) 

where g(sa I/1) is such that/~(dsa) = g(sA I k t) 2a(dsa). It is easy to check 
that any regular measure is tempered/31) 

Before listing the main results in ref. 26, it may be worthwhile to give 
a brief discussion on the main idea used to characterize the Gibbs statesJ 26) 
For A e cg, let HA be the local Hamiltonian given by (2.4). By the Feynman- 
Kac formula the operator e x p ( - f l H a )  has its integral kernel ~26'33) 

e(-Pn~)(xa, YA) = f PxA,),A(dSA) e x p [  - -  Vfl(SA) ] 
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and so the finite-volume partition function for the local Hamiltonian H A 
and the inverse temperature fl is given by 

ZA, p -- T r ~ [  exp(--flHA) ] 

= f ;~p(dSA) exp[ -- Vp(sA)] 

Similarly the local Gibbs states can be expressed by integrations on the 
path space (~p)a. Employing standard methods in classical statistical 
mechanics, ~2'~9'2s~ we were able to introduce a family of conditional 
measures (specifications) and Gibbs measures on g2 p. See (2.16) and 
Definition 2.1.2 stated below. The Gibbs states have been defined by the 
conditional reduced density matrices (2.18) and Gibbs measures. For the 
details we refer the reader to ref. 26. See also the discussion below. 

Finally we collect definitions and basic results from ref. 26. The 
partition function in A ~ rr for the interaction r with boundary condition 
Y~ ~ is given by 

Z~,p(.f) = J" 2p(dSA) exp[ -- Vp(SA) -- Wp(s,~, YA~)] (2.15) 

Notice that ZA~p corresponds to the partition function with the zero 
Z ~ -Z~a(O).  The Gibbs specification y * =  boundary condition, i.e., A,p-- . 

(Y~)A~,r with respect to ~ is defined by (12'26'2s) 

I Z~(5)--I f ~A(dSA ) exp[ -- Vp(sA) -- Wp(SA, gA')] 

Y~(A I Y)= ] x 1A(SA Yac) if g ~  

tO if Yr 

(2.16) 

where A e ~ and 1 A is the indicator function on A, and sA gAc is the con- 
figuration defined by sA on A and gAC on A c, respectively. It can be checked 
that the Gibbs specification satisfies the consistency condition(~2): For 
A ~ A ,  g ~ ,  

y~r~(A I S) - I~ y~/ds* I e) y~IA I s*) 

= y~(A I e) 

The Gibbs measure on (/2 a, o ~ )  is defined as follows(~2'26): 

(2.17) 



232 Park and Yoo 

Definit ion 2.1.2. A Gibbs measure/1 for the potential �9 is a Borel 
probability measure on (t2 #, ~-) satisfying the equilibrium condition 

We denote by N*(lff)  the family of all Gibbs measures on (lff,  o~) for the 
interaction potential c/,. 

We then have the following result: 

Theorem 2.1.3 (Ref. 26, Theorem 2.7). Under Assumption 2.1.1 
any Gibbs measure v e~'~(f2 p) is regular. Furthermore, ~*(f2 p) is non- 
empty, convex, compact in the local convergence topology, and a Choquet 
simplex. 

Let us now consider Gibbs (equilibrium) states on the quasilocal 
algebra 9I. For A eel  and a configuration g ~ ,  we define a function 
kA(XA,yA;g), XA, YA e(Ra) A, which takes the role of the conditional 
reduced density matrix~4"7-9~: 

ka(xA, YA; g)= Z~,#(g)- '  f P~,yA(dsA) exp[ -- V#(SA)- Wp(s~, gAc)] 

(2.18) 

With the help of these functions and the Gibbs measures we define the 
Gibbs (equilibrium) states as followsJ 26) 

Definition 2.1.4. A state p on the quasilocal algebra 9.1 is called a 
Gibbs state if there exists a Gibbs measure v ~ N~(f2 #) such that the restric- 
tion PA of p to 91A is given by 

pA(A)=Tr~A(K~A'~A), A~91 A 

where the density matrix K~A v~ is defined by its integral kernel 

K(Av)(XA, YA) = f v(ds) k,dxA, YA; s) 

We denote by f#~(91) the family of Gibbs states for q~ on 9.I at inverse 
temperature fl > 0. 

T h e o r e m  2.1.5 (Ref. 26, Theorem 2.9). Under Assumption 2.1.1, 
(~(91) is nonempty, convex, and also weak*-compact if the interaction is 
of finite range. 
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2.2. Main Results 

As stated in the Introduction, the purpose of this paper is to prove the 
uniqueness and the cluster properties of Gibbs states in a region of high 
temperature (sufficiently small f l>0) .  In order to avoid unnecessary 
complications, we make the following assumptions on the interaction 
potentials. 

Assumption 2.2.1. The potential q~ = (qs~),~=z,, satisfies the 
following conditions: 

(a) There exist Borel functions P and U on R d and R d x R d x N such 
that 

( I ) { i } ( X i )  = e ( x i )  , CI){,.j}(Xi, Xj) = U ( x ,  xj; [ i-- j l )  

~ 4 ( x n ) = O  if I~JI > 2  

(b) There exist y > 2 ,  D~ >0 ,  D2>0 ,  and D3>0 such that the 
inequalities 

D~(lxlr-Dz)<<.P(x)<~D3(lxlr  + l), x ~ R  a 

hold. 
(c) There exists a decreasing positive function ~g on the natural 

numbers such that 

7g(r)<~Kr . . . .  for some K a n d e > 0  

Furthermore, the bound 

IU(Ix,-xjl)l <~ 7 ' ( [ i - j [ ) I x i l .  Ixjl 

holds. Here (and hereafter) we have used the notation U(Ixi-xjl)- 
U ( x ,  xj; [ i - j [ ) .  

Remark. Assumption 2.2.1(c) implies that for any A = Z v the bound 

.,~Aj~= f(Ix,-xjl) ~<J,~y' Ix, I 2 (2.19) 

holds for some J > 0 .  Thus from Assumption 2.2.1(a)-(b) and the above 
bound one has that 

V(xA)>> ~ [A' I x l " - 6 ' ]  (2.20) 
l e a  

for some positive constants A' > 0  and 6' >0,  and so all conditions in 
Assumption 2.1.1 are satisfied. 

The following are the main results in this paper: 
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Theorem 2.2.2 (Uniqueness of Gibbs states). Under Assumption 
2.2.1 there exists f l0>0 such that for any fl with 0 < f l < p o  the Gibbs 
measure on (g2 p, o ~ )  is unique, i.e., card(f#~(lff))= 1. Consequently the 
Gibbs state on 9.[ is unique. 

Theorem 2.2.3 (Cluster property). Under Assumption 2.2.1, let 
pEf~(9.I )  be the unique Gibbs state for f l<~0.  Then for any Aeg.l,~, 
B~9.I A, 

Ip(AB) --p(A) p(B)[ --, 0 as dist(A, A') ~ oo 

where dist(A, A') = inf{ l i - J l : i s A, j e A' }. 

We next consider the quantum unbounded spin systems in the 
one-dimensional lattice space Z. Let gt be the function on N given in 
Assumption 2.2.1 (c). 

Theorem 2.2.4. Assume that [Tt(r)]l/2<~Kr-l-" for some con- 
stants K >  0 and e > 0. Then for any fl > 0 there exists a unique transla- 
tionally invariant Gibbs state. 

The rest of the paper is devoted to the proof of Theorem 2.2.2-2.2.4. 

3. CLUSTER EXPANSIONS 

3.1. Cluster Expansion for Zero Boundary Conditions 

We develop a cluster expansion for zero boundary conditions in this 
subsection. A cluster expansion for general Gibbs states will be developed 
in the following subsection. The methods we use are closely related to those 
in refs. 23 and 25. Using the notation U(Ixi-xjl)  = U(xi, xj; [ i - j l  ) again, 
we write that for A ~ c# 

Pp(si)=i~o 

Up(Is,-sjl)=Io ~ 

P(Si(T)) dr, Pp(SA) = 2 PP(Si) 
it," 

U(Is,(v)-sj(r)l)dr, 

sp(sa)= Y. gp(ls,-sjl) 
{i.j} = A  

Vp(s,') = Pp(SA) + Up(s.,) 

(3.1) 
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For A~Cg, let ~B(I2 p, ~a) be the family of bounded functions depending 
only on the configurations sa e (SP) A. The local Gibbs measure on (t2 a, ~A) 
with zero boundary conditions is given by 

(0) t s  f VA, ,gk j )  f(SA ) [o) = vA.a(ds~ ) 

- ZA'P I 2p(dSA) exp[ -- Vp(sA)]f(sa) (3.2) 

ZA,p = f 2p(dSA) exp[ -- Vp(sA)] 

For zl = A e cg and f ~  (s p, ~ )  the above can be expressed as 

V~A0)a(f) = Z ~,~ f 2p(dsa)f(s,t)exp [ - -  Vz(sa)-,,~aXa Pa(si)J 

• [ - -  ~ Up(s~--s j ) -~ 'Up(s; - -s j )] (3 .3)  
i, j e  A\zl 

Denote by b = {i,j} any two-point set in Z v, which is called a bond in Z v. 
Let ~(A) be the family of bonds in A: 

~(A) = {b: b =  {i,j} =A} (3.4) 

For given b e ~(A) we write 

Up(so) = up( I s , - s j l ) ,  b= {i,j} (3.5) 

hp(sb) = exp[ -- Up(sb) ] -- 1 (3.6) 

Using the above notation, we may write 

= e x p [ - -  ~ Up(Sb)] 
b ~,~(A): 
bOa(A) 

(3.7) 
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For given finite family ~ of bonds (a family of two-point sets) one has the 
following decoupling identities: 

[ ~ Up(sb)l = 1--I [hp(sb)+ 1] exp - b  b ~  

= ~ [-I ha(sb) (3.8) 

where the term corresponding to • = ~ is defined to be 1. For X c  Z: and 
i ~ X it follows that 

= 1 + ~ I-I hp(sb) 
O ~ $ ~ a t t X w { i } ) :  be.q1 

For b = {i,j} we write hp(sb)= hp(s~, s~). Then from the above one has the 
following recoupling identities: 

[ ~xU,(lse-sj , ) l  - 1  (3.9) E H hp(si, sj)=exp - 
0 , ~  Y ~ X  j e  Y : j ~ i  

Using the decoupling identities (3.8), we obtain that 

e x p [ -  y'  Ua(sb)] : Z I-[hp(sb) (3.10) 
b +,~(A):  0 _~ a~ ~ at(A): b+,~'  
b ~.~(A) b ~ . ~  ~ b g~,~(d) 

A family ~ = {Xl, X2,..., X,,} of subsets of Z v is said to be connected 
if for any Xi, Xj e ~ there exists { X a ..... X0} c ~ such that X,) n X,).~ ~ t2/ 
( j =  1,..., l -  1), and Xic~X~, :/:~ and Xjc~X~:~ .  In the expression (3.10) 
we decompose ~ into the disjoint union of connected families (of bonds): 

�9 ~=,~l U..~2U . . .  k _ / ~ m ,  

~i c~ ~j  = ~5 ( i ~ j )  and each ~ is connected 

For given A = A  there exist l(i>0) components which we may assume 
~ , ,  ~2 ..... ~t such that ~ w { A } is connected for i = 1 ..... L For the sake of 
brevity we employ the following terminology: For A c A  and families 
~ ,  ~2,.-., ~t of bonds we say that 

" P ( { ~  ..... ~t}; A, A) holds" i f~ ,  ~ ~ ( A ) ( i =  1 ..... 1), ~ i ( " l ~ j  ~- ~ ( i = j ) ,  

~,-W {A} is connected (i= 1,..., 1), and be~i=~b(~(A)  (3.11) 
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Let {~, ,..., ~,} be the maximal family for which P({&, ..... g~t}; A, A) holds. 
Resumming over s~' = Uj"=~+~ Nj, and using (3.8) and (3.10), we obtain 

= E E I-I h,(sb) 

x exp [ --o,as, a,~,..,,U a~m Ua( Sb ) ] (3.12) 

Again, for the sake of typographic convenience we use the following 
terminology: for a given family {b~,..., b.} of bonds and subsets A, X =  Z ~ 
we say that 

"P({b, ..... b.}; A, X) holds" if U bi=X, b,C~(A) ( i=  1 ..... n), 
i = 1  

and if {b, ..... b,} u {A} is connected (3.13) 

Then it is easy to check that 

E . . . .  E 2 
1 ~  {~l~J o. . . ,~/}:  ~ X = A :  I b  I b n} c ~lt(JO: . 

P({,~l,...,,,~/};d,A)holds z J ~ X ~ O ( X # O )  P(~bl,[~'bnl;A,X~holas 

- -  (3.14) 

For given A, X~ cg, define 

x e x p I - - V p ( s ~ ) -  ~ Pp(s,)] 
i ~ X\zl 

for X~A # ~  (3.15a) 

I~p(zl, X;sa)=exp[-Vp(s~)] for X\zl = ~ (3.15b) 
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and for f ~ B ( l f f ,  ~ )  define 

Rp(A, X;f)= f 2p(ds a ,~ x)f(sa) lr J(; sa ,~x) (3.16) 

We now use (3.3), (3.7), (3.12), and (3.14)-(3.16) (in that order) to obtain 

O ~ _ X = A :  
Ar~X~O(X~O) 
x\~ ~(x~) 

Rp(A, X;f) [ ZAxxua'P] 
ZA.p ] 

(3.17) 

We write 

Z~a ~ - f 2n(ds) exp[ -Pa(s)] 

=Tr (exp [ - f l ( - � 89  + P ) ] )  (3.18) 

For A c A c Z v and f ~  ~B(s p, ~n), put 

Kp(a, x; s ~ )  - (z~ ~ -'~ ~' R(zh x; s~u.) (3.19a) 

Ka(A, X;f) - f  2a(dsa~x)f(sa) Ka(A' X; sa,,x) (3.19b) 

2a,p-- (z~O))-IAI Za,# (3.19c) 

ga.a(X) = ZAXx'p (3.19d) 
2,~,p 

Then (3.17) and (3.19) imply that for A =X=A a n d f ~  ~3(t2 a, ~ )  

= 

A~X@O(X@O) 
X\~@O(X~O) 

Kp(A, X;f) gA,p(A w X) (3.20) 

The above is the cluster expansion for zero boundary conditions. 

Remark. Contrary to the cluster expansions in refs. 23 and 25, we 
did not expand the factor exp[-Up(sn)]  in the above expansion. See 
(3.7) and (3.12). This will simplify the proof of the convergence of the 
expansion. 
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3.2. A Cluster  Expansion for General  Gibbs Measures 

For  given Gibbs measure vp ~ ~(QP) we use the equilibrium conditions 
in Definition 2.1.2 to write that for any A = A  ~cg and f e  ~(s ff,~) 

r 

va(f) = J va(ds)f(s) 

= fv,(dg){Za.,(Y)-'f2a(dsA)f(s,j)exp[- V,(SA)-- W,(sA, SAc)]  } 

(3.21) 

In order to develop a cluster expansion we write 

exp[ - Vp(SA)- W~(sA, gA~)] 

=exp[--Va(s,j)-- ~ P,(si)--U~"(A,A;SAS~,)] (3.22) 
leA\z1 

where 

U~'~(~J,A;sAgAO-- Y. Va(s,-sA+ 
,~J,'/2;\~ 

+ Y, Up(s,-6) 
{i.j}: 

i ~ A , j e A  c 

We remark that ~2) 

Y. Up(s,-sA 
{i, j} =Akzl 

(3.23) 

exp[ -- Wp(SA, ga~)] = lira exp[ -- Wp(sA, YA'XA)] 
A ' ~  Z ~' 

for any ge  6 .  Following the procedure from (3.7) to (3.14) in Section 3.1 and 
using a method similar to that used there one can derive the following equality: 

exp[ - U(p')(A, A; SAga)] 

O~--Xe~r {bl,...,bn} = . ~ ( X ' ) :  j =  1 
d ~ X ~ f ~ ( X ~ O )  p({bl.,...bn};d,X'}holds 
X \ A  # 0 ( X ~ O )  b i e r ( A t ) ,  i= l , . . . ,n  

•  -- U~2)(A, X, A; SAxca ~ X~YA~)] (3.24) 

where 

U~2}(A, X, A; SAx(a u x~gAc) 

- E Wp(s,-sA + X w~(s,-6) t3.25) 
{i, j} ~ A \ (~ t~  X~ [i , j}:  

jG Ack(A u XO 
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We define that for X e (g 

g(X)- f vp(ds) exp [ I,,j~=x Ua(s,-sj) + Wp(sx, sx~) ] (3.26) 

Using (3.8), (3.25), and the equilibrium conditions, it can be checked that 
for A u X c A  

(z~~ u ~" j " vp(ae) z. , .p(e)-'  I ,~,( as .,\, ,, u,~) 

=g(A ux) 

In (3.24) we divide the sum into two parts: 

u~2~(,~, x..4; sA\,~ ~,xjA0] 

(3.27) 

E . . . .  E +  Z ' 

Xe~ X ~ A  X:X~AC#~25 

We first consider the contribution from X c  A. If one substitutes (3.24) into 
(3.22) and then (3.22) into (3.21) and uses (3.27), one may observe that the 
term corresponding to \ c A  is exactly Kp(A,X;f)g(AuX), where 
Kp(A, X;f) has been defined in (3.19a). 

Next we consider the contribution from X with Xc~ AC# ~ .  Observe 
that for X with X n  A c ~ 

-- Vp(s~) -- ~ Pp(si)  - Uta2)(A, X, A; sA\(, ~ ox~iA~) 
i ~ A\A 

= - -  Vf l (SA) - -  W l l ( S A ,  SA c) "~- U~3)(A, X ,  A ;  SASAr ) (3.28) 

where 

u~%e, x, A; s.,eA0 

= X 
{i,j} c A m (X\A) 

+ ~ U d s  , - sj) + 
i ~ A ~ ( X \ A )  
jR A\(Xu A) 

+ Z %(e,-sA 
i~ACk(Xu A) 

j ~ A ~ ( X ~ Z I )  

Vf l (S  i - -  Sj) -~ Wl l (S  A, S A\,d ) 

i ~ A e ~ X  
j e A  

(3.29) 
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We use (3.28) and the equilibrium conditions to conclude that for any 
h e L1(s a, 2p(ds a ,~x)) and X with Xc~ A c # ~5 

f vp(d~) ZA.a(g)-l f 2(ds.~) h(s~u x) exp [ - Va(s,~) - 

x exp[ - U~Z)(A, X, A; SA\(auX~gA~)] 

= f vp(ds) h(sn ~x) exp[ U~')(A, X, A; s~gA~)] 

~] Pp(si)] 
i e  A\,d 

(3.30) 

Thus, combining the above results, we conclude that for a n y f ~  ~B(t2 p, ~a) 
and d c zl 

vp(f) = ~. 
O ~ _ X ~ A  

Kp(A,X;f)g(zlwX)+Ra.p(f)  (3.31) 

where 

R.(I)= • z h.is ,) 
x ~ e  {bt,...,b,} ~ a ~ ( x )  j =  I 

LJ ~ X #  ~ P( {bl ,...,bn} ;at, X)  ho lds  
AC t~ X ~ ~J bi$ .~(A c) 

x exp[ U~3)(A, X, A; SASAc)] (3.32) 

Here U~ 3) has been given in (3.29). The expression (3.31) is the cluster 
expansion for general Gibbs measures. 

4. BASIC E S T I M A T E S  

In this section we collect basic estimates which will be used in the 
proofs of the convergence of the cluster expansions in Section 3. We derive 
the estimates for quantum unbounded spin systems in Section 4.1. We also 
derive the necessary estimates for classical unbounded spin systems in 
Section 4.2 for the reader's convenience. Throughout this section we assume 
that the potential �9 satisfies the conditions on Assumption 2.2.1. 

4.1. Basic Estimates: Quantum Systems 

Recall the definition of Z~ ~ in (3.18). We use the following notation: 

,slp=If;ls(r)lZdvl l/2 (4.1) 

for sES a. Recall also the notations in (2.9) and (3.1). 
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Let 7> 2 be the constant in Assumption 2.2.1(b) and let 0c be a fixed 
positive number. 

I .emma 4.1.1. For 0<fl~<0t there exist positive constants Cl, c2 
and c3 independent of fl such that the following results hold: 

(a) The bound 

holds. 

(b) 

holds. 

(c) 

Z(flo) ~ tiff--d(1~2+ l / ) ' )  

For given A/> 0 the bound 

f 2p(ds) exp[ --ep(s) + A Isl~] ~< c2fl -d~'/2+ 1/y, 

For given A >/0 the bound 

2p(ds) Islp exp[ -Pp(s)  + A Isl~] -< c3fl -a"/2+ '/ ' f l  c~ -~/'/~ 

holds. 

The proof of the above lemma will be given at the end of this sub- 
section. As a consequence one has the following results: 

C o r o l l a r y  4.1.2. For given A >/0 there exist positive constants c'~ 
and c~ independent of fl (0 < fl ~< ~) such that the bounds 

(Z~O))-I f 2p(ds) exp[ -Pp(s) +A Islg] ~< el 

and 

(2 ~o,)-, f ~p(ds) Islp expE -ep(s )  + a Isl~3 ~ c ~  '1-2/ '~ 

hold. 

Proof. The corollary follows from Lemma 4.1.1. | 

In the proof of the convergence of the cluster expansion (3.8) for 
general Gibbs measures, we will need fl-dependent probability estimates for 
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Gibbs measures. Recall the function ~ in Assumption 2.2.1(c). For given 
A e cg, v# e ~ ( t2# ) ,  and constant A >/0, put 

v#(ds; A, A ) = e x p  [A )-" ~(]i--j[) Is, l# Is:l#] v#(ds) (4.2) 
k { i , j}  : i e A , j e  A c d 

and let p#(sa; A, A) be the distribution of v#(ds; A, A) on (/2#a, ~ )  with 
respect to 2#(ds,~): 

v#(dsa; A, A) = p#(sa; A, A) 2#(ds~) (4.3) 

From the equilibrium conditions in Definition 2.1.2, it follows that for any 
A ~ A ~ Z  ~ 

ppls.,; .4, ~) = f vplae) z.,:/e) -l f ~(d,a\~) exp[ - v~(~ : ) -  W/s . , ,  ~.,)] 

xexp [A Z ~ ( l i - j l )  Is, l~ I~:1~] (4.4) 
{ , , j }  : i e - 4 , j e A  c 

where gj= s:. ifjEA, and g:=~. ifj~A*. We also write that for A c A  ~c~ 

p~~ ; A, A ) - Z  - l  - A,a : 2a(dsA\~) 

exp [ -- Va(sa) X + A 
L 

E 

We then have the following results: 

{/,j} :i~ z t , j~  A\zl 
~( l i - j l )  Is, la Isjla] 

(4.5) 

Proposition 4.1.3. Under the assumptions as in Lemma4.1.1 one 
has the following results: (a) For any A E~, A 1>0, and vpe ~ ( /2# ) ,  there 
exist constants A * >  0 and 3 > 0 independent of fl such that the bound 

pp(s~; A, A) <~ l-I fld~'/2+ l/r' exp {--[ A* ~ ls,(r)lY dr--3] } 
i E d  

holds 

(b) For any A c A e C g  and A~>0, there exist constants . 4 > 0  and 
S> 0 independent of fl such that the bound 

p~,)a(s,~;A, A) <~ ~ fla~'/z+I/" exp {-[A ~; lsi(*:)Ird*:-31} 

holds. 

822/80/I-2-16 
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The proof of the above proposition will be given in the Appendix. The 
above results are stronger than the Ruelle-type probability estimates in 
ref. 32. 

Proof of Lemma 4.1.1. (a) For any r > O, put 

S(r) = {s~Sa: sup Is(r)l ~<r} (4.6) 
O~<r~' 

Then one has that for ]Y > 0 

ZP~ fz(p-'/,) 2p(ds) exp[ -Pp(s)]  

>~ c f z(a_,/r) 2p( ds) exp [ - D3 f; ls( z)lY dz ] 

>1 c f s(a-'/') ;ta(ds) 

Denote by A(r) the largest box contained in the ball of radius r and let 

~(r)  = {s ~ SP : s(r) ~ A(r), vr  �9 [0,/~] } 

Then from the above it follows that 

Z~ ~ I> c fr(a_~/, ) 2a(ds ) 

= c Tr ( exp [ ~ A A(,-,/,) ] ) 

>1 c l fl-a( l/2 + I/r) 

where AA~,) is the Laplacian operator on L2(A(r), dx) with Dirichlet b.c. 
(b) By Assumption 2.2.1(b) one obtains that the left-hand side of the 

inequality is bounded by 

1.h.s.~<cf,~a(ds)exp [ ---~--f: D3 als(r)lYdz 1 

1 D 3 <<-cTr(exp[-'(--~A+-~-]xlr)]) 

<<.c(2nfl)-a/2 I, dxexp ( 1 D  [ x l ' ) - - ~ f l  3 

<~ C2fl-d(1/2 + l/y) 
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Here we have used the Golden-Thompson inequality (34) to get the third 
inequality. 

(c) By the H61der inequality one has that 

2 # 2/), 
[S,# = fo [s(r)]2d'c<~ti'-(2/r)[f:,s(T)[rdT 1 (4.7) 

Thus the left-hand side of the inequality is bounded by 

1.h.s.<~ti('-2/~')/2f2a(ds)[f:[s(r)[~'drl'/~'exp[-Pa(s)+A[s[2a] 

<~ti('-2/~'v2[f2a(ds)[f: [s(v)lr dr] exp[-Pa(s)+A ]s,~]] '/r 

[y l,, 
x 2p(ds) exp[ -Pp(s) + A Isl 

Here we have used the H61der inequality to obtain the second inequality. 
Using the inequality x exp(-x)<~cexp(-x/2)  for x>~0 and Assump- 
tion 2.2.1(b), we conclude that 

l.h.s.<~cfl'~-2/rv2f 2,(ds) exp [ -~D3 f o l  a 's(r)' r dr] 

C3ti(1--21Y)12ti--d(I/2+ fir) 

Here we have used the method employed in the proof of part (b) of the 
lemma to get the last inequality. I 

4.2. Basic Estimates: Classical Systems 

We derive the basic estimates for the classical systems corresponding 
to Lemma 4.1.1-Proposition 4.1.3. Put 

Z P~ = I dx exp[ -tiP(x)] (4.8) 

We then have the following results: 

Lemma 4.2.1. Let ~ be a fixed positive number. For 0 < fl ~< 0c there 
exist positive constants el, c2, and c3 independent of t i>0  such that the 
following results hold: 
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holds. 

(b) 

holds. 

(c) 

(a) The bound 

z~~ c,ti-" 

For given A >/0 the bound 

f dx exp[ - t i P ( x )  + <~ c2ti At ix  2 ] 

For given A >/0 the bound 

f dx exp[ - t i P ( x )  + <<. [til/2x[ Atix  2 ] C3ti--d/)'ti (1 ~ 2 ~  ~ 2  

holds. 

Proof. The lemma 
changes of variables. II 

follows from (4.8), Assumption 2.2.1(b), and 

Corollary 4.2.2. For given A/>0 there exist positive constants c'n 
and c~ independent of ,8 (0 <fl ~< ~) such that the bounds 

and 

(Z ~o,)-1 I dx exp[ --t iP(x) + Atix 2 ] <~ c'1 

(z ~~ dx Iti '/"xl exp["-tiP(x) + Atix 2] <~ c'2ti r -2/r)/2 

hold. 

Proof. The corollary follows from Lemma 4.2.1. I 

Denote by fgP*(f2) the space of Gibbs measures for classical 
systems, cng) where s (Rd) z'. For given d e~ ,  A >t0, and vp ~ ffP*(f2), put 

vp(dm; A, A)-exp [ A ~ ~g( l i - j l )  lxil . lxjl l v#(dm ) 
{ i , j }  : i e A , j e d  r 
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and let pp(x~; A, .4) be the distribution of v~(&o; A, .4) on (g?,~, ~ )  with 
respect to dx,~. We also write that for .4 c A ~ 

p ( o )  / x = 

x e x p [ - f l V ( x a ) + A  ~. gt([i--jl)[xi[.[x,[ ] 
{i,j} : i~,d, j~A\,d 

where ZA. p is the partition function, i.e., the normalization factor for A = 0. 

Proposition 4.2.3. Under the assumption as in Lemma4.2.1 one 
has the following results: 

(a) For any A e cg, A >/0, and vp s ffP*(s~), there exist constants A* 
and fi independent of fl such that the bound 

pp(x,~; A, .4 ) <~ I] flu/,, exp( - A*fl Ix i 1" + 6) 
i~zl 

holds. 

(b) For any .4cAeC~ and A>~0, there exist constants , t > 0  and 
d >  0 independent of fl such that the bound 

p~.~(x~; A, .4) ~ I-I flu/,, exp( - A f t  Ix, l" + N) 

holds. 

The proof of the above proposition will be given in the Appendix. 

5. C O N V E R G E N C E  OF THE CLUSTER E X P A N S I O N :  
ZERO B O U N D A R Y  C O N D I T I O N S  

We first need the following result: 

Proposition 5.1. Let ~ be a fixed positive number. For 0<fl~<02 
there exists a constant c > 0 independent of fl and X c  A ~ c.g such that the 
bound 

ga(X) ~< exp(c IXl) 

holds, where IXl = card(X). 

Proof. From (3.19) it follows that 

gA( X) = ( Z ~~ I~ Z A\X,p/Z A.p 
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and 

(Z(a~ ZA\x,a= f 2a(dSA)exp[--Va(sA)+ ~, Ua(s~-sj)] 
{i.j} ~a: 

Notice that by Condition 2.2.1(c) there exists A > 0 independent of fl such 
that 

Up(s,- sj) = y~ up(s , -  sj) + Wp(sx, s,,\x) 
{ i , j }  r { i , j }  = X 

{ i , j }  t a X #  0 

~<A ~ Is, l~+ ~ ~/'(li-jl) Isjla Isjla 

Thus we use (4.5) and Proposition 4.I.3(b) to conclude that 

gA(X) <~ fla('/2+'/r) ~,ta(ds)ex p - A  ]si(r)l" dr + A Is;l~+6 

Now the proposition follows from the method used in the proof of 
Lemma 4.1.1(b) and the above inequality. II 

Let e > 0 be the constant in Assumption 2.2.1(c). For given c > 0 and 
A ~ f ,  put 

Ap(A)-  ~. I )~(ds~x) hKp(A, X; sa ~x)l 

,d r~Xv~ O 
x \ a  ~* O 

x exp{c Izl w Xl + �89 logEd(zl, X)]} (5.1) 

where a)(A, X) =  sup{dist(A, i):i ~ X}. The main result in this section is the 
following: 

T h e o r e m  5.2. There exists f lo>0  such that for any 0 < f l < f l o  and 
~cg the series Aa(zl) in (5.1) converges and the bound 

A a( A ) <~ e~ A (fl ) 

holds, where a and A(fl) are constants such that A(fl)~ 0 as f l ~  oo. 

We postpone the proof of the above theorem until later. As a conse- 
quence of the theorem we have the following result: 
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Theorem 5.3. There exists f lo>0 such that for 0 < f l < f l o  and 
f e  ~B(f2 p, ~ )  the bound 

(0) Ivam(f)l ~< Ilfll oo e~ 
holds uniformly in A, where A'(fl) ~ 1 as fl -~ 0. 

Proof. Recall the cluster expansion in (3.20). By Proposition 5.1, 
Assumption 2.2.1(c), and Corollary 4.1.2 (in that order) we have 

IKp(,4, X;f)l ga(,4 u X) 
O c _ X : X ~ z t  

~< eclal(Z~O))-Ial f 2p(ds4 ) If(s~)l exp[ - Vp(s4)] 

llfll ~ eda' {(Z~~ y 2.(dsa)exp[-Pa(s) + A ]s]~] }I,~I 

~< llfll oo e ~ 

On the other hand, from (5.1), Proposition 5.1, and Theorem 5.2 it follows 
that 

IKp('4, X;f)I gA(A u X) <~ IIflIoo Aa('4) 
O ~ X ~ A :  

x \ ,~  ~ 

~< Ilfll ~ e~ (5.2) 

The theorem follows from the cluster expansion (3.20) and the above 
bounds. I 

In the rest of this section we prove Theorem 5.2. Recall the definition 
of l~(,4, X;s4ux) in (3.15). We write X= Yw W with Y=,4c~X and 
W= X\,4. For ,4, y, We ~ such that Y c  ,4 and W c  ZV\,4, put 

I4(,4; Y, ~ - f  ;ta(ds~)~ta(dsw)IRa(,4, y u  w; s~u w)l 

= f2,(dsn)2,(asw)exp [ -  V,(sn)- ~ Pa(sj)l 
j e w  

x y', f i  Ihp(%)l (5.3) 
{ b h . . . , b n } ~ ( Y u H ~ :  j = l  
Ub/= } 'u  W, bjr  

{bl ,...,bn} u {-4} connected 

The right-hand side of (5.3) can be viewed as the sum over graphs {bl ..... b.} 
which are ,4-connected (i.e., {b, . . . . .  b.} u {,4} is connected). We reduce the sum 
over ,4-connected graphs to that of,4-connected tree graphs as follows: 
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Proposition 5.4.  For  given A, Y, W= {it ..... i,.} ecg, the bound 

Ip(A; Y, {i, ..... i,,}) 

f 2p(dsa~ w)exp [ -  Vp(s4)- Y', ep(s/)] 
j e w  

{ i , j }  : k =  1 j e  Y ~  { i l , . . . , i k - i  } 
i e  { il ,-.-, ira} 

j e  Y ~  {il.. . . ,i , ,} 

holds. 

Proof. For  fixed A, y, W={i],...,i,,} with Y ~ A  and W~Z~\A, let 
{b,,...,b,} c~(Yw IV) with [) b / =  Yw W, b j ~ ( Y ) ,  and {b~ ..... b,,} u {A} 
connected be given. Notice that there exists at least one ij ~ W such that if 
one removes all the bonds adjacent to i, (i.e., all b =  {iz,j} e{b~ ..... b,})  
from {b~ ..... b,,}, what remains is still a d-connected family of  bonds. By 
relabeling the elements of W one may assume i~= i,,. Thus there exists 
W ' c  Y u  {il ..... i , ,_]} such that 

jfl=lha(sb,)l[l~m.,l:iew, lha(si.,si), " ,  = ['I 1 [ [ 1  jkf=.lha(soj,), ] (5.4) 

where { b/, ,..., b/, } c {b~ ..... b,} is d-connected. We substitute (5.4) into (5.3) 
and perform the summation over W ' =  Y u  {i~ ..... i , ,_]}. By a recoupling 
identity (3.9) we have 

~ 11 Iha(s,.,, s,)l 
IZJ~l'V" = Y u { i l , . . . , i m - t }  { i m , i } : i e W '  

~<exp[ }-" IUp(sim-sj),l-1 (5.5) 
j e  Y u  { i l , . . . , im-I}  

This implies that for given ~ # Y ~  A and ~ ~ W =  {il ..... i,,} ~ Z~\A the 
bound 

f i  Iha(%)l 
{ bl,...,bn} =,9~( g,,J W)  : j = l  

{ bl,...,bn} u {,d} connec ted  

• E 

1} 
P 

]1 Ihp(sb,)l 
{bl.. . . ,bp} = ~ (  Yv., { i l , . . . , im-I}  ): i =  1 
Ut,j= Yu {i~ ....,i.,_ t}.t,j r a~( ~,  

{ bl ,..., b•} connec ted  

(5.6) 
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Iterating the above inequality m times and using the fact that e x -  1 ~< 
Ixl e Ixl for any x e R ,  the proposition follows from (5.3) and (5.6). | 

We are now ready to prove Theorem 5.2. 

Proof  o f  Theorem 5.2. Notice that if f ( i t  ..... i,,,) is a symmetric func- 
tion on Z v, then 

f (X)  = ~ 1 , 
~ . .  ~ f ( i l  . . . . .  ira) 

O # X ~ Z  ~' m = l  " i l , . . . , imEZ v 

where Z '  denotes the sum over ii . . . . .  i m ~ Z v with the restriction that ik ~ it 
if k # l ,  k, 1= 1 ..... m. For given A, X with d n X # ~  and X \ A  ~ ,  we 
write 

X =  Y w  W, Y = X c ~ A ,  W = X k A  

Y =  {jr ..... jq}, W =  {i, ..... i.,} 

From (5.1), (3.19a), and (5.3) it follows that 

I,al ~. 1 1 E '  (Z~~ - ' ta l+ ' ' '  
Aa(A) = ~" q! m! 

q = l  m = l  j l , . . . . jqez l  
il ,..., im ~ d t 

xexp c(I,41 + m ) + ~ l o g  [d(A, W)] 

x Ip(A; {jr ..... jq}, {i, ..... i,,}) (5.7) 

where d(A, IV) = sup{dis t (A, j ) : j~  {i~ ..... i,,,} }. 
Next we estimate Ia(A; Y, W) by using Proposition 5.4. From Assump- 

tion 2.2.1(c) it follows that there exists A > 0 such that 

IUp(s,-sj)l ~ a  ~, Is, l~ (5.8) 
{ i , j }  Eg$(X) i e  X 

Write that for ~ # Y c  A and m ~ N 

7 ~ ( A ; Y , m ) -  ~ '  e x P { 2 1 o g [ a ( A , W ) ] ) I a ( A ; Y , { i  ~ ..... ira}) (5.9) 
il ,...,im ~ gl c 

where W= {i I . . . . .  ira}. Using Proposition 5.4, the bound (5.8), and Assump- 
tion 2.2.1(c), we obtain that for ~ ~ Y c A  and ~ ~ W = {i~ ..... i,,} 
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I p ( z l ;  Y, { i l  ..... i , , , } )  

-< I -- xp [-  z 
j ~ Y  

k = l  E gvJ { il,...,ik- 1} 

If one expands I--[~'=, {-- -} ,  the right-hand side of (5.10) has 
(I Y[ + m -  1 )!/I YI! terms. One may recognize that each term can be labeled 
by a tree graph T =  T~ va ... u T~ on the vertex set Yva {i~,...,i,,,} with 
some / ( 1 ~< / ~< 1 I"1 ) connected components T k, k = 1 ..... l. Notice that some 
of the T; can be a singleton. Each connected component Tk has a root in Y. 
For each bond { i , j}  e T, we assign the factor g J ( l i - j l )  Is;I# Isjl#. In order 
to control the distance factor d(A, IV) in (5.9), we note that for any x~> 1, 
y/> 1, x + y ~< 2xy and so by an induction the bound 

log x~ ~< (log x~ + log 2) 
i 1 iffil 

holds for any x~/> 1, i = 1 ..... n. By the above bound we conclude that 

log[(d(A, W)]~< ~ [ l o g ( l i - j l ) + l o g 2 ]  (5.11) 
{i , j}  ~ T 

for any tree graph T = T ~ v a  . . .  vo T~. Next we substitute (5.10) into 
(5.9) and use (5.11). Then instead of g J ( l i - j l )  we have the factor 
(2 l i - j l )  "/2 g~( l i - j l )  for each bond { i , j}  ~T,  which is summable by 
Assumption 2.2.1 (c). Put 

0 = 2  ~ lil ~/= ~(1il) 
i~Z ~' 

We then perform the summations over i,,,~AC,..., i~, E A ~ and then resum 
over tree graphs to conclude that 

.7/~(A; y, m,~< 1 2#(dsa)exp [- Va(sa)+ Aj~y ls:-l~] 

k = l  k = l  

x f i  Q ~ DIsk l# lsy l#)  (5.12) 
kffil  ~ Y u  {l,...,k-- 1} 
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Notice that the Sk are now just integral variables. Note that for any A > 0 

~ Isikl: k~==l(jEy~{l...k_i} D Isjl#) 

~< D Iskla Is:la 
1 e Y u  ..... m} 

~<m!/)" Isklp exp A ~] Is:l~ (5.13) 
1 j e  Y u  { 1,...,m} 

for some cons tant / )  independent of m and ft. Thus from (5.12) and (5.13) 
we obtain the bound 

I#(A; Y, m)<~m, D" f 2#(dsa)exp [ - -  V,(sa)+ 2A ~ [sj[~l 
j e Y  

• 2p(ds) Islpexp[-Pp(s)+ 2A Isl~] (5.14) 

From (5.11), (5.8), (5.14), and Corollary 4.1.2 it follows that 

f l~l 1 Aa(zl)<~qZ ~.I (Z~~ -,'Jl e clA, 1 2,(ds~) 

x exp - Vp(s,~) + 2A ~. Isjl (~/~(,-2:,,~/2).. 
j e  Y:IYI = q  I 

<<.A(fl) Z (Z~~ -I~l e~l~l [~#(ds~) 
Y~ zl 

= A(/~)r ~ ecrU' I ~p(ds~) 

x { ,N [ l + exp(2A ls,12p) ] } exp[ - Va(s.~) ] 

<<. eal~Ma(fl) (5.15) 

where A(fl) ~ 0 as fl ~ 0. This completes the proof of Theorem 5.2. | 
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6. UNIQUENESS AND CLUSTER PROPERTIES OF 
GIBBS STATES 

6.1. Convergence of Cluster Expansion for 
General Gibbs Measures 

We recall the cluster expansion (3.31) for general Gibbs measures. We 
state our results: 

Proposition 6.1.1. Under Assumption 2.2.1 there exists f lo>0 
such that for any 0 < fl <flo the following results hold: 

(a) There exists a constant c > 0 such that 

g(X) ~< exp(c IXI) 

(b) For a n y f e  ~3(12 p, ~a), 0 < fl < flo, R A,p( f )  is absolutely summable 
and 

IRA,a(f)I ~< Ilfll oo e clzl exp -~log[dis t (A,  A c] A(fl) 

for some constant c > 0. 

Corol la ry  6.1.2. For a n y f ~ 3 ( f 2  p, ~ ) ,  0< f l< f lo ,  and vp~ (9'~(I2 p) 
one has 

vp(f) = ~" Kp(A, X ; f )  ~(a w X) 

The above expansion is absolutely summable. 

Proof. The above result follows from (3.31), Proposition 6.1.1, and 
Proposition 5.2. | 

Proof o f  Proposition 8.1.7. (a) Recall the definition o fg  in (3.26). 
Since there exists a constant A > 0 such that 

Y~ U~(s,-sj) + Wp(s:~, Sx~) 
{ i , j }  c:z~(X)  

~<J Z Is;l~+ Z  U(li-jl) Is, lp [#lp 
i~  X { i, j J  : i~  X , j ~  X e 
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it follows from (3.26) and Proposition 4.1.3(a) that 

g ( Y )  ~< H f l d t l / 2 +  i/~,)e6 

i E x  

<~ ~I flat 1/2 + i /r)eO 
i ~ X  

<< eClaq 

2#(dsi, exp[-A*f~lsi(r)l"dr+Jlsil~] 

2#(dsi) exp[--Af:lsi(z)l)'dz I 
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Here we have used the method in the proof of Lemma 4.1.1(b) to get the 
last inequality. 

(b) From (3.29) and Assumption 2.2.1(c) it follows that there exists 
a constant J >  0 such that 

U~ 3)<~2J Z Is~r~+2 Z ~ ( [ i - J l ) l s ,  rpts:tp 
i E d ~ J X  i ~ d u X  

j e ( A u X ~  c 

Now instead of A and A in Proposition 4.1.3(a) we take A w X and A w X, 
respectively, Using Proposition 4.1.3(a), we obtain that 

X ~ : ~ :  {bl.....bn} = ~ ( X ) :  i =  1 
AI r X ~ ~ P( { b l ...., bn} ; At, . ~  holds 
A C ~  X~ ~ b i ~ ( A  c) 

xti~xflatl/2+l/Y)exp[-A*~:lsi(r)lrdz+2JIs, l~+6]t 

By using the method in the proof of Lemma A.l.l(b)-(c), one obtains that 
for any A* > 0, J > 0 there exist C'l and c~ independent of fl such that 

~2a(ds) lsl#exp[-A*~o q ] Is,(v)l" dr  + J Isil~ ~< c~fl (' -2/~.)a/~-,~1/2 + ,/~.) 

One may follow the proof of Theorem 5.2 step by step to conclude that the 
bound in part (b) of the proposition holds. 1 
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6.2, Kirkwood-Salsburg Type Integral Equations 
and Uniqueness 

We first derive Kirkwood-Salsburg type integral equations (3~ and 
then prove the uniqueness of Gibbs states by using the equations. Let f be 
a function defined on cr Such functions form a Banach space ~r 

~ r  { f :  Ilfll = sup ~ -Ixl If(X)l < m}, ~ > 0  (6.1) 

We propose to derive an equation of the form ~3~ 

gA = 0 + KA ga 

g = O + K g  

where 0 ( ~ ) =  1 and O(X3=O if IXI #0.  Furthermore, we will show that 
IlK, ]l < 1, IIKI] < 1, and hence 

g a = ( l - - K a ) - I  0 

g =  ( l - K )  -~ B 

are well defined and for any X ~ cg the limit 

lim gA(X) = g(X) 
A ~ Z  v 

exists. In (3.15), we chose A = {i~} for a fixed i I cA. For X~Cg with i~ ~X, 
put 

}, X) - f 2a(dsx) R#({ i, }, X; Sx) (6.2) 

Following the procedure in Section 3.1, it can be checked that 

ZA\~x- {it} ).# = Z~~ A\x,p + 

As in Section 3.1, let 

y 
O#s=a\{x-{it}) 

il e s ,  ISI ~>2 

Rp({it}, S) ZAvxus),p 

Kp( { il}, 8) =/~p({ i,}, S)/(Z}~ Isl 

For any fl, we define an operator Kp on ~r by 

(Kaf)((~)  = 0 

( K p f ) ( X ) = f ( X - { i , } ) -  ~. 
0 ~, S = z " \ ( x -  {i~}) 

il �9 S, ISl i> 2 

/~p({ i, }, S) f (Xva  S) 

(6.3) 

(6.4) 

(6.5) 
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We introduce the operator ZA on ~ defined by 

(xAf)(X) = zA(X') f(X-) 

where Xa(X) = 1 if X c A  and xA(X') = 0  otherwise. 

L e m m a  6.2.1. Let gA be given by (3.19d). Then the relation 

gA = U "t- ZAKpXA gA 
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(6.6) 

For any f r  ~3(t2 p, ~ )  the infinite-volume limit 

=)m 

exists. Furthermore, the equation 

v~(f) = ~ Kp(A, X;f)  g(A u X) 

holds for a n y f ~ ( g 2  p, ~ ) .  

holds. 

(c) 

holds for any A ~ ~. 

Proof. The lemma follows from (6.3) and (6.4). I 

Proposition 6.2.2. There exists fl0 > 0 such that for any 0 < fl < flo 
the following results hold: 

(a) For ~ = e  c the bound 

[[xagpZA II < 1 

holds uniformly in A e ~g, where c is the constant appearing in Theorem 5.1. 

(b) The limit 

g (X)=  lim gz(X) 
A ~ Z  v 

exists for any X~ cg. Furthermore, the function g on cg belongs to ~ and 
the equation 

g=O+Kpg 
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Proof. (a) From (6.5), (6.6), and Theorem 5.2 it follows that 

IIxA KpXA II ~< e-C (1 + sup 
il~Z" il~S, IS[~>2 

<~ e-~[ 1 + eaA(fl) ] 

[Kp({i,}, S)I e ~'s') 

where A(f l )~  0 as fl ~ O. Part (a) follows from the above bounds. 

(b) As in the proof of (a), we can show that IlKp[[ < 1. Hence the 
equation 

g=O+Kpg  

is well defined for a unique g. Using the standard argument in ref. 30, we 
can show that for any XeCg, gA(X)~g(X) as A--, 0. For the details we 
refer to ref. 30. 

(c) This follows from (3.20), Theorem5.2, and part (b) of the 
proposition. | 

Now we are ready to prove the uniqueness of Gibbs states, 
Theorem 2.2.2. By the definition of Gibbs states we only need to show the 
uniqueness of Gibbs measures. 

Proof of  Theorem 2.2.2. Recall the definition of g(X) in (3.26). By 
the equilibrium condition [see also (3.27)], we can write that for any 
X~cg(XcA)  

gIx) = I vpIde) zAy)-' I 
x exp[ --Pp(sx) -- Va(SA\x) -- Wp(SA\x, YAc)] 

Adapting the method used in Section 3.2 [see also (6.3)], one obtains the 
following expansion: 

~ ( X -  {i~}) = ~(X) + ~. Kp({ il}, S) g(Xw S) 
O e S c A \ ( X - -  {il}): 

il ES, ISI >~2 

+/~A.p(X) (6.7) 

for any ij EX, where /~A.p(X) is the contribution from S with i t ES and 
S c~ A~# ~ :  The precise expression can be obtained from the expression of 
RA.p(f) in (3.32) by replacing A and X by {it} and S, respectively, and by 
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setting f =  1 in (3.32). By the same reason as that in the proof of Proposi- 
tion 6.1.1(b), it can be checked that 

lim /~a.a(X) = 0 (6.8) 
A ~ Z  v 

for any XeCg, and so from (6.7), (6.8), and (6.5) one concludes that the 
function g on ~ satisfies the integral equation 

~=O+Kpg 

Since IlKpllr for any 0 < f l < f l o  (by Lemma6.2.1 and its proof), the 
above equation has a unique solution in ~r By Proposition 6.2.2 we 
conclude that 

g = r  

Thus Corollary 6.1.2 and Proposition 6.2.2(c) imply that 

V~ O) = Vp 

for any v a ~ ff~(t2a). This completes the proof of the theorem. | 

6.3. Cluster Properties: Proof of Theorem 2.2.3 

We have developed the cluster expansion for Gibbs measure v~ ~ and 
the convergence of the cluster expansion for 0 <f l<f lo .  Let v# be the 
unique Gibbs measure. We then have the following cluster properties: for 
anyf l  ~B( I2#, ~a,) and f2 E ~3(~#, ~2 )  

Ivp(f~f2)-va(fa)v:(f2)l~O as dist(Ai, A2) ~ oo (6.9) 

Since there are well-known methods (6"7"3~ to derive the cluster properties 
from the convergence of the cluster expansion, we will not produce the 
proof of (6.9) and refer the reader to the refs. 6, 7, and 30. 

Next we consider the cluster properties of the unique Gibbs state 
pEff~(9.I) for 0 < f l < f l o .  For A~Cr let Z~a 2) be the class of Hilbert- 
Schmidt operators in 9.I~. Since Zta 2~ is a-weakly dense in ~ a  by the 
von Neumann density theorem, it suffices to show the cluster property for 
A] eZ~, ) and A2EZ(a~ ). For given A eZ(~ z), let hA(xa,ya) be the integral 
kernel of A. Define 

x f P~.,,~ (dga) f 2p(dsx\,~) I~#(A, X; gaSx\ a) (6.10) 

822/80/I-2-17 
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One may compare the above expression to Kp(A, X;f) in (3.16) and 
(3.19). By the method in Section 3.1 one may derive the following cluster 
expansion: 

P~~ = E Kp(A,X;A)gA.p(AuX) (6.11) 

for any A e X]2). We write that for .r Wx.>,, I~l~=lg I~(,)l'- &. we  remark 
that for any c > 0 

I P~. y,(dY,) exp[ -- Pp(s + c 1s 
f e d  

<~c(A, fl) l-I exp ( -  ~-~ ]xi- y,] z) 

and so a direct application of the method used in Section 5 proves the 
convergence of the expansion (6.11) for A a~(~ 2). The cluster properties 
follow from the convergence of the cluster expansion. ] 

7. UNIQUENESS OF GIBBS STATES FOR ONE-DIMENSIONAL 
SYSTEMS 

We consider quantum unbounded spin systems in Z. In ref. 22 the 
systems are studied extensively and under an appropriate assumption on 
the pair potential it is proved that for any value f l > 0  there exists an 
infinite-volume limiting Gibbs state which is translationally invariant and 
ergodic. Furthermore, it is analytic in terms of the self-interaction and two- 
body interaction potentials. The main tool used in ref. 22 is a polymer-type 
cluster expansion which differs from that in Section 4. Thus we do not 
know yet whether the state constructed in ref. 22 is a unique Gibbs state in 
the sense of Definition 2.1.2 (and Definition 2.1.4). In this section we prove 
that any one-dimensional system has a unique translationally invariant 
Gibbs state. That is, we produce the proof of Theorem 2.2.4. The main tool 
is a perturbation argument across the boundary a V of A ~ ~g.iz.~5,29) 

Consider one-dimensional systems and denote by g~(t2 p) the family of 
translationally invariant Gibbs measures on (~P, ~ ) .  By using the method 
in refs. 19 and 26 one may show that the measure constructed in ref. 22 is 
a Gibbs measure, and so g~(OP) is not empty. A straightforward applica- 
tion of the method in the proof of Theorem 2.7 in ref. 26 shows that 
g~(t2 p) is compact in the local convergence topology and a Choquet 
simplex. 
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For given A e Z, let W#(SA, SAC) be the interaction across the boundary 
of A defined in (2.12): 

W f l ( S A '  SAC) = E U f l ( S  i - -  S j )  
{ i , j }  : i~ A , j ~  A c 

From now on we suppress fl in the notations if there is no confusion 
involved. For A ec~, define a function l~a.a, on /2  by 

ITvA.A~(S.~,SAc)= ~'. ~. ~([ i - - j [ ) I s ,  l.ls:l (7.1) 
i ~ A  j ~ A  c 

We then have the following result: 

I . emma 7.1. Let A=[-n ,n]  be an interval in Z, and let the 
condition in Theorem 2.2.4 be satisfied. Then exp[ ~A.ac] is an element of 
L](g2, dv) for any veg*(g2), and i exp[  14"A,AC] dv is bounded uniformly 
in A. 

Proof. For given A = [--n,  n], we write that 

ff,,~R)_ ~ w(R)~o s~) A , A  r  ,, i, AC~Oi~ 
Iil <n  

l~(R)t~ sac)= ~ ~([i-jl)lsil Isil i, Ar~Ois 
j>~n + l 

and write I~'~L~A, analogously. For A = [ - n ,  n], put 

p~=D[ 7/(ln-il] -t/z 

D =  y' [ ~ ( I n - i l ) ]  1/2 
I i l  ~<" 

Thus p,.> 1, i eA, and ~H <,,P7 ~= 1. By the H61der's inequality 

; exp [ I~A.Ac ] dv<<. (I exp[21~]~a'] dr) ''2 ([ exp[2 I~L')A~] dv)"2 

= f exp[214z~R]c] dv 

and 

' Iil-<,, ex 2- 14 zcm ;expl-2I~AR.~c] dv~< I-I ( f  P[ ~-i {i}.addv) 1/pi (7.2) 



262 Park and Yoo 

Notice that 

2p, 7V]~],A~(s A, sac) <~ 2D Z 
j > ~ n + l  

Thus by Proposition 4.1.3(a), the right-hand 
uniformly in A. This proves the lemma. | 

For A = [ - n, n ] and m e N, let 

W " ~ (  s ~ ,  s ~ )  = 
{ i , j }  : 

i E A ,  d(A c, {i} ) ~<m 
j ~ A C ,  d(A c, { j }  ) ~<m 

Then for any s e 

lim 
n l ~  oo 

and 

[ ~'( l i -  j l  ) ] '/2 Is, I . Isjl 

side of (7.2) is bounded 

U(s, - sj) (7.3) 

exp[ wr SAc)] = exp[ W(SA, Sac)] 

exp[ W~")(SA, SAc)] ~< exp[ I~A,A~(SA, SAc)] 

For A = [ - n ,  n], m 6 N, and A E ~ (A c A), we write 

BA(A; m) -- f v(ds) 1A(s) exp[ W(')(SA, SAc)] 

OA(m ) -- f v(ds) exp[ Wr SAC)] 

and 

v~')( A ) - B A( A; m)/D A(m ) 

BA(A ) - f v(ds) 1A(s) exp[ W(SA, Sac)] 

DA -- f v(ds) exp[ W(SA, SAt)] 

We also write 

(7.4) 

and 

va(A) = BA(A)/DA 

L e m m a  7.2. For given A =  [ - n , n ] ,  
sequence {Ba(A; m)} .... N (resp. 
DA) uniformly in A. 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

A c A ,  and A e ~ ,  the 
{DA(m)},,~N) converges to BA(A) (resp. 
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Proof. Using the fundamental theorem of calculus and Assump- 
tion 2.2.1(c), one obtains 

IBA(A; m) -- BA(A)I <~ I v(ds)l W(sA, sac) -- W('~)(SA, sAc)l 

x exp[ WA,ac(sa, sac)] (7.10) 

where l~A.ac has been defined in (7.1). We note that 

[ W(SA, SA*) - -  w ( r n ) ( S A ,  SA')[ <~ ~. ~( l i - - j l )  IS, I" Isjl 
{ i , j }  : 

i e A , j e A C :  
d(AC, i )  > m o r  d ( A , j )  > m 

By Lemma 7.1 

f v(ds) exp[ sac)] ~< c 

uniformly in A. Now the lemma for BA(A; In)} follows from (7.10), the 
dominated convergence theorem, and the above bounds. The proof for 
{Da(m)} follows from the same argument. I 

We are now ready to show Theorem 2.2.4. 

Proof o f  Thoorom 2.2.4. Let v e ~"*(g?) be a fixed extremal element 
in 8"((2). By Assumption 2.2.1(c) 

I W(s.~, s~)l -< g"~,~o(s~, s~o) 

and so by Lemma 7.1, exp[ W(sA, sac)] is an element of L](~, dr) for any 
A = [ - n ,  hi. By (7.9) and the equilibrium conditions one may check that 

VA=V~ ) on (Q, ~a) (7.11) 

where v~ ) is the local Gibbs state with zero boundary conditions. Let v (~ 
be the infinite-volume limit of v~~ (22) Then from (7.11) and Lemma 7.2 it 
follows that for any A ~ ~ ,  A ~ r 

v (~ limo vA.(A) 

= limoo [ . l i m  v~)(A)] 

= limo~ [,1Lmo~ v~)(A)] (7.12) 
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where A,, = [ - n ,  n]. We assert that for given m ~ N and A ~ ~a 

lim v~  ) (A) = v(A) 
n ~  c o  

(7.13) 

We then conclude from (7.12) and (7.13) that 

V (0) - ~ -  'V 

Since d'*(g2) is a simplex, this proves the theorem. 
We prove the assertion (7.13). Put 

F~")(s a, sac) = exp[ W(')(S A, SAc) ]/D A(m) 

Then F(A')~L2(g2, v) and 

v~")(A) = f v(ds) 1A(S) F~m)(SA, SAc) 

By using (7.5), the method in the proof Lemma 7.1, and Jensen's inequality 
one can show that {[IF(A~)l[2} is bounded uniformly in A,, (and into). 
Thus there exists a subsequence / F  c")~ which converges weakly to an ( Anj J 
L2-function, say F ~  ). Thus one has 

,,lirn v~(A)= I dv 1AF~ ) 

It is easy to check that F ~  I is a Y-'w-measurable function, where #'-o~ is the 
algebra of tail events. (~9) Since v is trivial on #-o~ by the extremality of v, ~2) 
and v(F~ ~) = 1, we conclude that 

lim VA"~(A) = v(A) 
n j  ~ o o  

We note that {n~m)(A)} is bounded uniformly in A. Since the above 
argument can be applied to any convergent subsequence of {n(A~)(A)},, the 
assertion is proved, l 

A P P E N D I X .  P R O O F S  OF P R O P O S I T I O N S  4.1.3 A N D  4.2.3 

In this appendix we produce the proofs of explicitly fl-dependent 
probability estimates in Propositions 4.1.3 and 4.2.3. We shall modify the 
probability estimates in refs. 26 and 32 in such a way that one extracts fl 
dependences explicitly. The modifications are a fl-dependent decomposition 
of the configuration space t2 # and a fl-independent 2 substitution in refs. 26 
and 32. 
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As in ref. 32, for given ct > 0 we can choose an integer Po > 0 and for 
each n>~Po an i n t e g e r / , > 0  such that II , ,+~/l , , - (1 +2001 <0. Put 

[n] = {i~ZV : Iil ~<1,} 
(A.1) 

V, = (2/,, + 1) v 

The following is Proposition 2.1 of ref. 32. 

I . emma A.1. Let e > 0 and c >/0 be given, and let ~ be the function 
on the natural integers given in Assumption 2.1.1(d) [also in Assumption 
2.2.1(c)]. If ~ is sufficiently small, one can choose an increasing sequence 
{~k,,} such that ~O,,>~ 1, qJ,,~ ~ ,  and fix P > P o  so that the following is true: 

Let n(-) be a function from Z" to the positive real numbers. Suppose 
that there exists q such that q >/P and q is the largest integer for which 

E n(i)2>~r 
i~[q] 

Then the bound 

c +  ~' ~ ~ ( l i - j l ) � 8 9  2]<<-e ~. n( i )  z 
i t [q+ l ]  i t [ q+ l ]  jCEq+l] i~[q+ I] 

holds. 

P r o o f  o f  Propos i t ion  4 .1 .3 .  (a) Recall the notations in Eqs. 
(4.1)-(4.3). We first introduce a fl-dependent decomposition of configura- 
tion space: 

~ o = { S ~ 2  #'1- ~ fl2/y [s~li <- ~qVq,  Vq>~ P } 
]~ it  [q] 

~j~ q = { S E a fl : ]]1 itE[q] fl 2 / ' l s i l 2p <<- ~b q V q a n d lfl i tZE t 3 fl z / r l s i l 2p < ~b t V t ' 

W>>.q+ 1) (A.2) 

q~ 

From the definition of ~ in (2.3) one has ~ = 9~. From the proof of 
Lemma 4.1.1(a) it follows that there exists a constant c independent of fl 
such that the bound 

f z(p-'/,) 2p(ds) exp [ - P p( s) ] >1 c f l -  u(1/2 + 1/~) 
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holds. Thus there exists fl-independent constant 2 > 0 such that the bound 

1 ~ j.fld(I/2+ l/r) f r  2#(ds) exp[ -Pa ( s ) ]  (A.3) 
(p-  I/0 

holds. 
Recall the definition of p#(sa; A, A) in (4.3). We write that 

pp(s,~; A, A) = p~(s~; A, ,t) + p~(s~; A, a)  

where p~ is the contribution from 91o and p~ the contribution from 
Uq>~P 91q. We first consider p~. It follows from (4.4) that for any zl ~ A  

t , p#(sa, A, A) 

= f ~(de)zA,~(s)-'f ,t~(dsA\2 l~o(~.,e~\~) 

•  Y'. ~ g ( [ i - j l ) l s i l ,  lgj[a] 
i ~ , J , j r  c 

where g:=s:  i f j e A  and g j = ~  i f j e A  c. Note that 

Z Is, l~</~'-2/~q~qv~ on 910 
i~[q] 

(A.4) 

~( l i - j l )  Is:12a <~ D ' (A.5) 
j e A  r 

See ref. 31 for the above bound. By Assumption 2.2.1 one has that for k e A 

- Vp(sA)- Wp(sa, sac) 

= -- Pp(sk) -- Va(sA\{, } ) -- W#(Sk, Sa\lk } ) -- Wa(SA, SAC) 

<~ -- P p(Sk) - Vp(SA\{k}) -- Wa(s'k, S a\{k }) -- Wa(S',S ~\{k } . YA~) 

+ J(lsk[~ + [s~.[~) + Z ~U(lk-j[)[g:l~ (A.6) 
i 

There exists a constant D ' >  0 independent of fl, 0 <f l  ~< c~, such that for 
any i �9 z/ and SAY.~ ~ 91o 
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where J=Y".j ~(IJl). Thus from (A.5), (A.6), and the fact that Ixyl 
(x2+ y2)/2 it follows that for any k cA, SAYA~ 9~0 

- -Va(SA)--  Wa(sa ,~A~)+A ~ ~(l i - j [ )  Is, If Igjlf 
iEA , jEA  c 

<~ - Vf( s ~ \ l~  ) - w f (  4 ,  s A\~,~ ) - Wf(  s'~s ~ \ ~  , ~ ~)  

+A ~ ~ ( l i - j l )  Is, If I~lf +D (A.7) 
i eA \ {k} , j~ .A  c 

for some constants J >  0 and D > 0  independent of ft. Now we use (A.3), 
(A.4), and (A.7) to obtain that 

p'p(s~; A, D) 

<~2fla('/'-+l/~')enexp[--Pf(Sk)+]lskl~] sup exp[.7 [s~, 1~] 
s~ e Z'(f- J/y) 

x f v(dY)ZA,f(ff) - 1  fZ.(,b._ i/y ) A f t ( d s ' k ) f  2 f ( d S A \ { k } )  

xexp[-V#(s*)-Wf(s*,ga~)+h ~. ~[J(li--jl)lsilflsjlf] 
i~a\{*} 

j e A  r 

Notice that Is~l~/~ ~--'/' on 27(fl-'~'). Thus from the above we conclude 
that the bound 

fl'B(s,j; A, A) <~ fla(I/'-+ l/y) exp { - I  A* f#o [Sk(Z)l~' dz--(~] t 

x pf(sa\lk} ; A, Ak{k}) (A.8) 

holds for any k E A. 
Next we consider p~. By the equilibrium conditions one may choose 

A = Aq such that A c Aq and [q + 1 ] c Aq for each q(~>P), and such that 

t l t  S 

q>~P 

x exp [ - Vp(sA,) - Wp(sA,, "~A;) 

+ a  ~ ~(li--jl)Is, lp I~jlf] 
j ~ A  ~ 

(A.91 
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As in ref. 32, we have that for [ q + 1 ] = Vq 

-- Vfl(S Aq ) --  WjO(S Aq , S Aq) 

= - Va(stq + ,3) - vp(sA, \ t ,  + ,3)  - Wa(stq + ,3, sA,\E, +,  3) 

- -  W p ( S [ q +  i]SAq\[q+l],  g/l;) 

-- Vfl(S[q+ 1])  - -  Vp(SAq\[q+ 11) 
- WB(s'Eq+,3, s.,q\tq+ ,3) -- Wp(s'tq+ ,3s.,,\cq+ ,3, ~-.,;) 

+ Y'. ~e(l i - j l ) (Is ,  l~+l~jl~) 
i~[q+ 1] 

j e [q+  l] c 

i ~ [ q + l ]  
jE[q+ l]c 

Notice that there exist constants ,~ > 0 and 6 > 0 such that 

VI t (S[q+I] )~  Z (A ~ [s;(r)[ ~'dr-6) 
i ~ [ q + l l  

We now use Lemma A.1 and the above bounds to conclude that for 
s Aj.t; ~ 91q 

- V~(s.,,) - Wp(s.,~, e . ; )  

-- V#(sAq\[q+ ,]) -- W#(S'[q+ 13, SA,k[q+ ]]) -- Wp(s'[q+ ,]SA,\[q + '1' e-t;) 

+ J  Z Isj.l~ (A.IO) 
j e [ q + l ]  

We add and subtract the factor eY'.;~tq+~3fl -~+z/y Is;l~ to (A.10), and 
then use (4.7) and (A.2) to conclude that for any fixed 0t > 0 and 0 < f l  < 

- Vp(sA~)- Wp(s~,,, e~:,) 

<~- ~ ( h *  Iqlsi(v)l"d~-61-C",;,~.q+,Vq+, 
i ~ [ q + l ]  \ "O / 

-- V~(S Aq\[q+ 1])  - -  Wp(St[q+ 11, S Aq\[q+ 11) - -  Wp(Slq+ ,]SAq\[q+ I ] ,  eAq)  

+ J  Z Isjl~ (A.11)  
j e [ q + l ]  
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Notice that the constant C" is independent of ft. On the other hand, one 
may use Lemma A.1 to obtain 

`4 ~, ~b(liL-jl)Is;lp Isjla 
i~,d 

j e A  c 

~<A y' O(I/-jl) Is, I. Isjla+.4 
iE [ q +  I ]  

j ~ [ q +  l] c 

~. ~b(li-jl) ls, l#lsjl# 
i e [ q + l l  
j ~ [ q + l ]  

+.4  ~ ~b(li-jl) Is, l: isjlp 
i eA\[q+ l] j~ A~ 

~ Aefl -(I-21>') ~ Is, l~+AJ 
i~ [ q +  1] i e[q+ I]  

+A ~ ~b(l i - j l )  Is, la Isjlp 
i~,d\[q+ 11 

j e zJ c 

Combining (A.11) and (A.12) and using 
ISj I~ ~ ~1 -- 2/~' on  ~-(~ -111,), one  concludes that 

(A.12) 

(4.7) and the fact that 

- Vp(sa,)- Wp(SA,, SAg) +h ~. ~O(li--jl) Is, la Isjla 
i~zl jEA c 

- Va(s .~ , \ tq .  ,1) - Wa(s'Eq+,l ,  sA ,x tq+ , l )  - W a ( s { q + , l  s-,\tq +,1, s-~;) 

+ A  ~ ~ ' ( l i -J l )  Is, lpi#l#-C"~Oq+xVq+, (A.13) 
iE,d\[q+ 11 

j~( ,J\[q+ 1]) < 

for some constants ,~, 3, and C"> 0 independent of fl, We substitute (A.13) 
into (A.9), and then use (A.3) and the method employed in ref. 32 to obtain 

p'~(s ~; .4, ~) 

~(,E[qH*]~gl'd(li2q-li)")exp[-- .[q~]nzf(aS~iSi("C)l)'d~--~)l 

x ~ exp(- C"•q+, Vq+ I A c O t t V q + l ) p l ~ ( S ~ k [ q + l ] ;  .4, zt\[q+ 1]) 
q>~P 

As in ref. 32, part (a) of the proposition follows from (A.8), (A.14), and an 
induction on card(A). 
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(b) T h r o u g h o u t  the p roo f  of  par t  (a) we fix A a n d  set Aq = A for all 
q/> P and  then  take the conf igura t ion  gAc to be zero. T h e n  the p roo f  follows 
from that  of par t  (a). | 

P r o o f  o f  Propos i t i on  4 .2 .3 .  Replac ing  s~ by  xi,  i E A, and  us ing  the 
m e t h o d  employed  in the p roo f  of P ro p o s i t i o n  4.1.3, the p ropos i t i on  follows 
from the m e t h o d  used in the q u a n t u m  case. We  leave the details  to the 
reader. | 
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